Module ida_ua
There are 2 kinds of functions:
functions that are called from the kernel to disassemble an instruction. These functions call IDP module for it.
functions that are called from IDP module to disassemble an instruction. We will call them 'helper functions'.
Disassembly of an instruction is made in three steps:
analysis: ana.cpp
emulation: emu.cpp
conversion to text: out.cpp
The kernel calls the IDP module to perform these steps. At first, the kernel always calls the analysis. The analyzer must decode the instruction and fill the insn_t instance that it receives through its callback. It must not change anything in the database.
The second step, the emulation, is called for each instruction. This step must make necessary changes to the database, plan analysis of subsequent instructions, track register values, memory contents, etc. Please keep in mind that the kernel may call the emulation step for any address in the program - there is no ordering of addresses. Usually, the emulation is called for consecutive addresses but this is not guaranteed.
The last step, conversion to text, is called each time an instruction is displayed on the screen. The kernel will always call the analysis step before calling the text conversion step. The emulation and the text conversion steps should use the information stored in the insn_t instance they receive. They should not access the bytes of the instruction and decode it again - this should only be done in the analysis step.
Global Variables
BINOPSTATE_DONE
BINOPSTATE_GO
BINOPSTATE_NONE
COMMSTATE_DONE
COMMSTATE_GO
COMMSTATE_NONE
CTXF_BINOP_STATE
CTXF_BIT_PREFIX
CTXF_CMT_STATE
CTXF_CODE
CTXF_DBLIND_OPND
CTXF_DEMANGLED_LABEL
CTXF_DEMANGLED_OK
CTXF_GEN_CMT
CTXF_GEN_XREFS
CTXF_HIDDEN_ADDR
CTXF_LABEL_OK
CTXF_MAIN
CTXF_MULTI
CTXF_NORMAL_LABEL
CTXF_OUTCTX_T
CTXF_OVSTORE_PRNT
CTXF_STACK
CTXF_VOIDS
CTXF_XREF_STATE
DEFAULT_INDENT
FCBF_CONT
FCBF_DELIM
FCBF_ERR_REPL
FCBF_FF_LIT
GH_BYTESEX_HAS_HIGHBYTE
GH_PRINT_ALL
GH_PRINT_ALL_BUT_BYTESEX
GH_PRINT_ASM
GH_PRINT_BYTESEX
GH_PRINT_HEADER
GH_PRINT_PROC
GH_PRINT_PROC_AND_ASM
GH_PRINT_PROC_ASM_AND_BYTESEX
INSN_64BIT
INSN_MACRO
INSN_MODMAC
MAKELINE_BINPREF
MAKELINE_NONE
MAKELINE_STACK
MAKELINE_VOID
OF_NO_BASE_DISP
OF_NUMBER
OF_OUTER_DISP
OF_SHOW
OOFS_IFSIGN
OOFS_NEEDSIGN
OOFS_NOSIGN
OOFW_16
OOFW_24
OOFW_32
OOFW_64
OOFW_8
OOFW_IMM
OOF_ADDR
OOF_ANYSERIAL
OOF_LZEROES
OOF_NOBNOT
OOF_NO_LZEROES
OOF_NUMBER
OOF_OUTER
OOF_SIGNED
OOF_SIGNMASK
OOF_SPACES
OOF_WIDTHMASK
OOF_ZSTROFF
PACK_FORM_DEF
STKVAR_VALID_SIZE
XREFSTATE_DONE
XREFSTATE_GO
XREFSTATE_NONE
dt_bitfild
dt_byte
dt_byte16
dt_byte32
dt_byte64
dt_code
dt_double
dt_dword
dt_float
dt_fword
dt_half
dt_ldbl
dt_packreal
dt_qword
dt_string
dt_tbyte
dt_unicode
dt_void
dt_word
o_displ
o_far
o_idpspec0
o_idpspec1
o_idpspec2
o_idpspec3
o_idpspec4
o_idpspec5
o_imm
o_mem
o_near
o_phrase
o_reg
o_void
Functions
calc_dataseg(insn: insn_t, n: int = -1, rgnum: int = -1) ‑> ea_t
calc_dataseg(insn, n=-1, rgnum=-1) -> ea_t Get data segment for the instruction operand. 'opnum' and 'rgnum' are meaningful only if the processor has segment registers.
can_decode(ea: ea_t) ‑> bool
can_decode(ea) -> bool Can the bytes at address 'ea' be decoded as instruction?
construct_macro(*args) ‑> bool
construct_macro(_this, insn, enable) -> bool See ua.hpp's construct_macro().
construct_macro(insn, enable, build_macro) -> bool
create_insn(ea: ea_t, out: insn_t = None) ‑> int
create_insn(ea, out=None) -> int Create an instruction at the specified address. This function checks if an instruction is present at the specified address and will try to create one if there is none. It will fail if there is a data item or other items hindering the creation of the new instruction. This function will also fill the 'out' structure.
create_outctx(ea: ea_t, F: flags64_t = 0, suspop: int = 0) ‑> outctx_base_t *
create_outctx(ea, F=0, suspop=0) -> outctx_base_t Create a new output context. To delete it, just use "delete pctx"
decode_insn(out: insn_t, ea: ea_t) ‑> int
decode_insn(out, ea) -> int Analyze the specified address and fill 'out'. This function does not modify the database. It just tries to interpret the specified address as an instruction and fills the 'out' structure.
decode_preceding_insn(out: insn_t, ea: ea_t) ‑> PyObject *
decode_preceding_insn(out, ea) -> (int, int) Decodes the preceding instruction. Please check ua.hpp / decode_preceding_insn()
decode_prev_insn(out: insn_t, ea: ea_t) ‑> ea_t
decode_prev_insn(out, ea) -> ea_t Decode previous instruction if it exists, fill 'out'.
get_dtype_by_size(size: asize_t) ‑> int
get_dtype_by_size(size) -> int Get op_t::dtype from size.
get_dtype_flag(dtype: op_dtype_t) ‑> flags64_t
get_dtype_flag(dtype) -> flags64_t Get flags for op_t::dtype field.
get_dtype_size(dtype: op_dtype_t) ‑> size_t
get_dtype_size(dtype) -> size_t Get size of opt_::dtype field.
get_immvals(ea: ea_t, n: int, F: flags64_t = 0) ‑> PyObject *
get_immvals(ea, n, F=0) -> PyObject Get immediate values at the specified address. This function decodes instruction at the specified address or inspects the data item. It finds immediate values and copies them to 'out'. This function will store the original value of the operands in 'out', unless the last bits of 'F' are "...0 11111111", in which case the transformed values (as needed for printing) will be stored instead.
get_lookback() ‑> int
get_lookback() -> int Number of instructions to look back. This variable is not used by the kernel. Its value may be specified in ida.cfg: LOOKBACK = . IDP may use it as you like it. (TMS module uses it)
get_printable_immvals(ea: ea_t, n: int, F: flags64_t = 0) ‑> PyObject *
get_printable_immvals(ea, n, F=0) -> PyObject Get immediate ready-to-print values at the specified address
insn_add_cref(insn: insn_t, to: ea_t, opoff: int, type: cref_t) ‑> void
insn_add_cref(insn, to, opoff, type)
insn_add_dref(insn: insn_t, to: ea_t, opoff: int, type: dref_t) ‑> void
insn_add_dref(insn, to, opoff, type)
insn_add_off_drefs(insn: insn_t, x: op_t, type: dref_t, outf: int) ‑> ea_t
insn_add_off_drefs(insn, x, type, outf) -> ea_t
insn_create_stkvar(insn: insn_t, x: op_t, v: adiff_t, flags: int) ‑> bool
insn_create_stkvar(insn, x, v, flags) -> bool
insn_t__from_ptrval__(ptrval: size_t) ‑> insn_t *
insn_t__from_ptrval__(ptrval) -> insn_t
is_floating_dtype(dtype: op_dtype_t) ‑> bool
is_floating_dtype(dtype) -> bool Is a floating type operand?
map_code_ea(*args) ‑> ea_t
map_code_ea(insn, addr, opnum) -> ea_t
map_code_ea(insn, op) -> ea_t
map_data_ea(*args) ‑> ea_t
map_data_ea(insn, addr, opnum=-1) -> ea_t
map_data_ea(insn, op) -> ea_t
map_ea(*args) ‑> ea_t
map_ea(insn, op, iscode) -> ea_t
map_ea(insn, addr, opnum, iscode) -> ea_t
op_t__from_ptrval__(ptrval: size_t) ‑> op_t *
op_t__from_ptrval__(ptrval) -> op_t
outctx_base_t__from_ptrval__(ptrval: size_t) ‑> outctx_base_t *
outctx_base_t__from_ptrval__(ptrval) -> outctx_base_t
outctx_t__from_ptrval__(ptrval: size_t) ‑> outctx_t *
outctx_t__from_ptrval__(ptrval) -> outctx_t
print_insn_mnem(ea: ea_t) ‑> qstring *
print_insn_mnem(ea) -> str Print instruction mnemonics.
print_operand(ea: ea_t, n: int, getn_flags: int = 0, newtype: printop_t = None) ‑> qstring *
print_operand(ea, n, getn_flags=0, newtype=None) -> bool Generate text representation for operand #n. This function will generate the text representation of the specified operand (includes color codes.)
ua_mnem(ea: ea_t) ‑> qstring *
print_insn_mnem(ea) -> str Print instruction mnemonics.
Classes
insn_t()
: Proxy of C++ insn_t class.
Instance variables
Op1
Op2
Op3
Op4
Op5
Op6
Op7
Op8
auxpref: uint32
__get_auxpref__(self) -> uint32
auxpref_u16: uint16 [2]
auxpref_u16
auxpref_u8: uint8 [4]
auxpref_u8
cs: ea_t
cs
ea: ea_t
ea
flags: int16
flags
insnpref: char
insnpref
ip: ea_t
ip
itype: uint16
itype
ops: wrapped_array_t< op_t,8 >
__get_ops__(self) -> operands_array
segpref: char
segpref
size: uint16
size
Methods
add_cref(self, to: ea_t, opoff: int, type: cref_t) ‑> void add_cref(self, to, opoff, type) Add a code cross-reference from the instruction.
to: (C++: ea_t) target linear address opoff: (C++: int) offset of the operand from the start of instruction. if the offset is unknown, then 0. type: (C++: cref_t) type of xref
add_dref(self, to: ea_t, opoff: int, type: dref_t) ‑> void add_dref(self, to, opoff, type) Add a data cross-reference from the instruction. See add_off_drefs() - usually it can be used in most cases.
to: (C++: ea_t) target linear address opoff: (C++: int) offset of the operand from the start of instruction if the offset is unknown, then 0 type: (C++: dref_t) type of xref
add_off_drefs(self, x: op_t, type: dref_t, outf: int) ‑> ea_t add_off_drefs(self, x, type, outf) -> ea_t Add xrefs for an operand of the instruction. This function creates all cross references for 'enum', 'offset' and 'structure offset' operands. Use add_off_drefs() in the presence of negative offsets.
x: (C++: const op_t &) reference to operand type: (C++: dref_t) type of xref outf: (C++: int) out_value() flags. These flags should match the flags used to output the operand return: if is_off(): the reference target address (the same as calc_reference_data). if is_stroff(): BADADDR because for stroffs the target address is unknown else: BADADDR because enums do not represent addresses
assign(self, other: insn_t) ‑> void assign(self, other)
other: an ida_ua.insn_t, or an address (C++: const insn_t &)
create_op_data(self, *args) ‑> bool create_op_data(self, ea_, opoff, dtype) -> bool Convenient alias.
ea_: (C++: ea_t) opoff: int dtype: op_dtype_t
create_op_data(self, ea_, op) -> bool
ea_: ea_t op: op_t const &
create_stkvar(self, x: op_t, v: adiff_t, flags_: int) ‑> bool create_stkvar(self, x, v, flags_) -> bool Create or modify a stack variable in the function frame. The emulator could use this function to create stack variables in the function frame before converting the operand to a stack variable. Please check with may_create_stkvars() before calling this function.
x: (C++: const op_t &) operand (used to determine the addressing type) v: (C++: adiff_t) a displacement in the operand flags_: (C++: int) Stack variable flags retval 1: ok, a stack variable exists now retval 0: no, couldn't create stack variable
get_canon_feature(self, *args) ‑> uint32 get_canon_feature(self, ph) -> uint32 see instruc_t::feature
ph: (C++: const processor_t &) processor_t const &
get_canon_feature(self) -> uint32
get_canon_mnem(self, *args) ‑> char const * get_canon_mnem(self, ph) -> char const see instruc_t::name
ph: (C++: const processor_t &) processor_t const &
get_canon_mnem(self) -> char const *
get_next_byte(self) ‑> uint8 get_next_byte(self) -> uint8
get_next_dword(self) ‑> uint32 get_next_dword(self) -> uint32
get_next_qword(self) ‑> uint64 get_next_qword(self) -> uint64
get_next_word(self) ‑> uint16 get_next_word(self) -> uint16
is_64bit(self) ‑> bool is_64bit(self) -> bool Belongs to a 64bit segment?
is_canon_insn(self, *args) ‑> bool is_canon_insn(self, ph) -> bool see processor_t::is_canon_insn()
ph: (C++: const processor_t &) processor_t const &
is_canon_insn(self) -> bool
is_macro(self) ‑> bool is_macro(self) -> bool Is a macro instruction?
macro_constructor_t()
: Proxy of C++ macro_constructor_t class.
Instance variables
reserved: size_t
reserved
Methods
build_macro(self, insn: insn_t, may_go_forward: bool) ‑> bool build_macro(self, insn, may_go_forward) -> bool Try to extend the instruction.
insn: (C++: insn_t *) Instruction to modify, usually the first instruction of the macro may_go_forward: (C++: bool) Is it ok to consider the next instruction for the macro? This argument may be false, for example, if there is a cross reference to the end of INSN. In this case creating a macro is not desired. However, it may still be useful to perform minor tweaks to the instruction using the information about the surrounding instructions. return: true if created an macro instruction. This function may modify 'insn' and return false; these changes will be accepted by the kernel but the instruction will not be considered as a macro.
construct_macro(self, insn: insn_t, enable: bool) ‑> bool construct_macro(self, insn, enable) -> bool Construct a macro instruction. This function may be called from ana() to generate a macro instruction.
The real work is done by the 'build_macro()' virtual function. It must be defined by the processor module.
construct_macro() modifies the database using the info provided by build_macro(). It verifies if the instruction can really be created (for example, that other items do not hinder), may plan to reanalyze the macro, etc. If the macro instructions are disabled by the user, construct_macro() will destroy the macro instruction. Note: if INSN_MODMAC is not set in insn.flags, the database will not be modified.
insn: (C++: insn_t *) the instruction to modify into a macro enable: (C++: bool) enable macro generation retval true: the macro instruction is generated in 'insn' retval false: did not create a macro
op_t()
: Proxy of C++ op_t class.
Instance variables
addr: ea_t
__get_addr__(self) -> ea_t
dtype: op_dtype_t
dtype
flags: uchar
flags
n: uchar
n
offb: char
offb
offo: char
offo
phrase: uint16
__get_reg_phrase__(self) -> uint16
reg: uint16
__get_reg_phrase__(self) -> uint16
specflag1: char
specflag1
specflag2: char
specflag2
specflag3: char
specflag3
specflag4: char
specflag4
specval: ea_t
__get_specval__(self) -> ea_t
type: optype_t
type
value: ea_t
__get_value__(self) -> ea_t
value64: uint64
__get_value64__(self) -> uint64
Methods
assign(self, other: op_t) ‑> void assign(self, other)
other: op_t const &
clr_shown(self) ‑> void clr_shown(self) Set operand to hidden.
has_reg(self, r) Checks if the operand accesses the given processor register
is_imm(self, v: uval_t) ‑> bool is_imm(self, v) -> bool Is immediate operand?
v: (C++: uval_t)
is_reg(self, r: int) ‑> bool is_reg(self, r) -> bool Is register operand?
r: (C++: int)
set_shown(self) ‑> void set_shown(self) Set operand to be shown.
shown(self) ‑> bool shown(self) -> bool Is operand set to be shown?
operands_array(data: op_t (&)[8])
: Proxy of C++ wrapped_array_t< op_t,8 > class.
Instance variables
bytes: bytevec_t
_get_bytes(self) -> bytevec_t
data: op_t (&)[8]
data
outctx_base_t(*args, **kwargs)
: Proxy of C++ outctx_base_t class.
Descendants
Instance variables
F32: flags_t
F32
default_lnnum: int
default_lnnum
insn_ea: ea_t
insn_ea
outbuf: qstring
outbuf
Methods
close_comment(self) ‑> void close_comment(self)
clr_gen_label(self) ‑> void clr_gen_label(self)
display_voids(self) ‑> bool display_voids(self) -> bool
flush_buf(self, buf: char const *, indent: int = -1) ‑> bool flush_buf(self, buf, indent=-1) -> bool Append contents of 'buf' to the line array. Behaves like flush_outbuf but accepts an arbitrary buffer
buf: (C++: const char *) char const * indent: (C++: int)
flush_outbuf(self, indent: int = -1) ‑> bool flush_outbuf(self, indent=-1) -> bool Functions to populate the output line array (lnar) Move the contents of the output buffer to the line array (outbuf->lnar) The kernel augments the outbuf contents with additional text like the line prefix, user-defined comments, xrefs, etc at this call.
indent: (C++: int)
forbid_annotations(self) ‑> int forbid_annotations(self) -> int
force_code(self) ‑> bool force_code(self) -> bool
gen_block_cmt(self, cmt: char const *, color: color_t) ‑> bool gen_block_cmt(self, cmt, color) -> bool Generate big non-indented comment lines.
cmt: (C++: const char *) comment text. may contain \n characters to denote new lines. should not contain comment character (;) color: (C++: color_t) color of comment text (one of Color tags) return: overflow, lnar_maxsize has been reached
gen_border_line(self, solid: bool = False) ‑> bool gen_border_line(self, solid=False) -> bool Generate thin border line. This function does nothing if generation of border lines is disabled.
solid: (C++: bool) generate solid border line (with =), otherwise with - return: overflow, lnar_maxsize has been reached
gen_cmt_line(self, format: char const *) ‑> bool gen_cmt_line(self, format) -> bool Generate one non-indented comment line, colored with COLOR_AUTOCMT.
format: (C++: const char *) printf() style format line. The resulting comment line should not include comment character (;) return: overflow, lnar_maxsize has been reached
gen_collapsed_line(self, format: char const *) ‑> bool gen_collapsed_line(self, format) -> bool Generate one non-indented comment line, colored with COLOR_COLLAPSED.
format: (C++: const char *) printf() style format line. The resulting comment line should not include comment character (;) return: overflow, lnar_maxsize has been reached
gen_empty_line(self) ‑> bool gen_empty_line(self) -> bool Generate empty line. This function does nothing if generation of empty lines is disabled.
return: overflow, lnar_maxsize has been reached
gen_empty_line_without_annotations(self) ‑> void gen_empty_line_without_annotations(self)
gen_printf(self, indent: int, format: char const *) ‑> bool gen_printf(self, indent, format) -> bool printf-like function to add lines to the line array.
indent: (C++: int) indention of the line. if indent == -1, the kernel will indent the line at idainfo::indent. if indent < 0, -indent will be used for indention. The first line printed with indent < 0 is considered as the most important line at the current address. Usually it is the line with the instruction itself. This line will be displayed in the cross-reference lists and other places. If you need to output an additional line before the main line then pass DEFAULT_INDENT instead of -1. The kernel will know that your line is not the most important one. format: (C++: const char *) printf style colored line to generate return: overflow, lnar_maxsize has been reached
gen_xref_lines(self) ‑> bool gen_xref_lines(self) -> bool
getF(self) ‑> flags64_t getF(self) -> flags64_t
get_stkvar(self, x: op_t, v: uval_t, vv: sval_t *, is_sp_based: int *, _frame: tinfo_t) ‑> ssize_t get_stkvar(self, x, v, vv, is_sp_based, _frame) -> ssize_t
x: op_t const & v: uval_t vv: sval_t * is_sp_based: int * _frame: tinfo_t *
init_lines_array(self, answers: qstrvec_t *, maxsize: int) ‑> void init_lines_array(self, answers, maxsize)
answers: qstrvec_t * maxsize: int
multiline(self) ‑> bool multiline(self) -> bool
only_main_line(self) ‑> bool only_main_line(self) -> bool
out_addr_tag(self, ea: ea_t) ‑> void out_addr_tag(self, ea) Output "address" escape sequence.
ea: (C++: ea_t)
out_btoa(self, Word: uval_t, radix: char = 0) ‑> void out_btoa(self, Word, radix=0) Output a number with the specified base (binary, octal, decimal, hex) The number is output without color codes. see also out_long()
Word: (C++: uval_t) radix: (C++: char)
out_char(self, c: char) ‑> void out_char(self, c) Output one character. The character is output without color codes. see also out_symbol()
c: (C++: char)
out_chars(self, c: char, n: int) ‑> void out_chars(self, c, n) Append a character multiple times.
c: (C++: char) n: (C++: int)
out_colored_register_line(self, str: char const *) ‑> void out_colored_register_line(self, str) Output a colored line with register names in it. The register names will be substituted by user-defined names (regvar_t) Please note that out_tagoff tries to make substitutions too (when called with COLOR_REG)
str: (C++: const char *) char const *
out_keyword(self, str: char const *) ‑> void out_keyword(self, str) Output a string with COLOR_KEYWORD color.
str: (C++: const char *) char const *
out_line(self, str: char const *, color: color_t = 0) ‑> void out_line(self, str, color=0) Output a string with the specified color.
str: (C++: const char *) char const * color: (C++: color_t)
out_long(self, v: sval_t, radix: char) ‑> void out_long(self, v, radix) Output a number with appropriate color. Low level function. Use out_value() if you can. if 'suspop' is set then this function uses COLOR_VOIDOP instead of COLOR_NUMBER. 'suspop' is initialized:
in out_one_operand()
in ..\ida\gl.cpp (before calling processor_t::d_out())
v: (C++: sval_t) value to output radix: (C++: char) base (2,8,10,16)
out_name_expr(self, *args) ‑> bool out_name_expr(self, x, ea, off=BADADDR) -> bool Output a name expression.
x: (C++: const op_t &) instruction operand referencing the name expression ea: (C++: ea_t) address to convert to name expression off: (C++: adiff_t) the value of name expression. this parameter is used only to check that the name expression will have the wanted value. You may pass BADADDR for this parameter but I discourage it because it prohibits checks. return: true if the name expression has been produced
out_printf(self, format: char const *) ‑> size_t out_printf(self, format) -> size_t Functions to append text to the current output buffer (outbuf) Append a formatted string to the output string.
format: (C++: const char *) char const * return: the number of characters appended
out_register(self, str: char const *) ‑> void out_register(self, str) Output a character with COLOR_REG color.
str: (C++: const char *) char const *
out_spaces(self, len: ssize_t) ‑> void out_spaces(self, len) Appends spaces to outbuf until its tag_strlen becomes 'len'.
len: (C++: ssize_t)
out_symbol(self, c: char) ‑> void out_symbol(self, c) Output a character with COLOR_SYMBOL color.
c: (C++: char)
out_tagoff(self, tag: color_t) ‑> void out_tagoff(self, tag) Output "turn color off" escape sequence.
tag: (C++: color_t)
out_tagon(self, tag: color_t) ‑> void out_tagon(self, tag) Output "turn color on" escape sequence.
tag: (C++: color_t)
out_value(self, x: op_t, outf: int = 0) ‑> flags64_t out_value(self, x, outf=0) -> flags64_t Output immediate value. Try to use this function to output all constants of instruction operands. This function outputs a number from x.addr or x.value in the form determined by F. It outputs colored text.
x: (C++: const op_t &) value to output outf: (C++: int) Output value flags return: flags of the output value, otherwise: -1 if printed a number with COLOR_ERROR 0 if printed a nice number or character or segment or enum
print_label_now(self) ‑> bool print_label_now(self) -> bool
restore_ctxflags(self, saved_flags: int) ‑> void restore_ctxflags(self, saved_flags)
saved_flags: int
retrieve_cmt(self) ‑> ssize_t retrieve_cmt(self) -> ssize_t
retrieve_name(self, arg2: qstring *, arg3: color_t *) ‑> ssize_t retrieve_name(self, arg2, arg3) -> ssize_t
arg2: qstring * arg3: color_t *
set_comment_addr(self, ea: ea_t) ‑> void set_comment_addr(self, ea)
ea: ea_t
set_dlbind_opnd(self) ‑> void set_dlbind_opnd(self)
set_gen_cmt(self, on: bool = True) ‑> void set_gen_cmt(self, on=True)
on: bool
set_gen_demangled_label(self) ‑> void set_gen_demangled_label(self)
set_gen_label(self) ‑> void set_gen_label(self)
set_gen_xrefs(self, on: bool = True) ‑> void set_gen_xrefs(self, on=True)
on: bool
setup_outctx(self, prefix: char const *, makeline_flags: int) ‑> void setup_outctx(self, prefix, makeline_flags) Initialization; normally used only by the kernel.
prefix: (C++: const char *) char const * makeline_flags: (C++: int)
stack_view(self) ‑> bool stack_view(self) -> bool
term_outctx(self, prefix: char const * = None) ‑> int term_outctx(self, prefix=None) -> int Finalize the output context.
prefix: (C++: const char *) char const * return: the number of generated lines.
outctx_t(*args, **kwargs)
: Proxy of C++ outctx_t class.
Ancestors (in MRO)
Instance variables
ash: asm_t &
ash
bin_ea: ea_t
bin_ea
bin_state: char
bin_state
bin_width: int
bin_width
curlabel: qstring
curlabel
gl_bpsize: int
gl_bpsize
insn: insn_t
insn
next_line_ea: ea_t
next_line_ea
ph: processor_t &
ph
prefix_ea: ea_t
prefix_ea
procmod: procmod_t *
procmod
saved_immvals: uval_t [8]
saved_immvals
wif: printop_t const *
wif
Methods
gen_func_footer(self, pfn: func_t const *) ‑> void gen_func_footer(self, pfn)
pfn: func_t const *
gen_func_header(self, pfn: func_t *) ‑> void gen_func_header(self, pfn)
pfn: func_t *
gen_header(self, *args) ‑> void gen_header(self, flags=((1 << 0)|(1 << 1)), proc_name=None, proc_flavour=None)
flags: int proc_name: char const * proc_flavour: char const *
gen_header_extra(self) ‑> void gen_header_extra(self)
out_custom_mnem(self, mnem: char const *, width: int = 8, postfix: char const * = None) ‑> void out_custom_mnem(self, mnem, width=8, postfix=None) Output custom mnemonic for 'insn'. E.g. if it should differ from the one in 'ph.instruc'. This function outputs colored text. See out_mnem
mnem: (C++: const char *) custom mnemonic width: (C++: int) width of field with mnemonic. if < 0, then 'postfix' will be output before the mnemonic, i.e. as a prefix postfix: (C++: const char *) optional postfix added to 'mnem'
out_data(self, analyze_only: bool) ‑> void out_data(self, analyze_only)
analyze_only: bool
out_fcref_names(self) ‑> void out_fcref_names(self) Print addresses referenced from the specified address as commented symbolic names. This function is used to show, for example, multiple callees of an indirect call. This function outputs colored text.
out_immchar_cmts(self) ‑> void out_immchar_cmts(self) Print all operand values as commented character constants. This function is used to comment void operands with their representation in the form of character constants. This function outputs colored text.
out_mnem(self, width: int = 8, postfix: char const * = None) ‑> void out_mnem(self, width=8, postfix=None) Output instruction mnemonic for 'insn' using information in 'ph.instruc' array. This function outputs colored text. It should be called from processor_t::ev_out_insn() or processor_t::ev_out_mnem() handler. It will output at least one space after the instruction. mnemonic even if the specified 'width' is not enough.
width: (C++: int) width of field with mnemonic. if < 0, then 'postfix' will be output before the mnemonic, i.e. as a prefix postfix: (C++: const char *) optional postfix added to the instruction mnemonic
out_mnemonic(self) ‑> void out_mnemonic(self) Output instruction mnemonic using information in 'insn'. It should be called from processor_t::ev_out_insn() and it will call processor_t::ev_out_mnem() or out_mnem. This function outputs colored text.
out_one_operand(self, n: int) ‑> bool out_one_operand(self, n) -> bool Use this function to output an operand of an instruction. This function checks for the existence of a manually defined operand and will output it if it exists. It should be called from processor_t::ev_out_insn() and it will call processor_t::ev_out_operand(). This function outputs colored text.
n: (C++: int) 0..UA_MAXOP-1 operand number retval 1: operand is displayed retval 0: operand is hidden
out_specea(self, segtype: uchar) ‑> bool out_specea(self, segtype) -> bool
segtype: uchar
set_bin_state(self, value: int) ‑> void set_bin_state(self, value)
value: int
setup_outctx(self, prefix: char const *, flags: int) ‑> void setup_outctx(self, prefix, flags) Initialization; normally used only by the kernel.
prefix: (C++: const char *) char const * flags: int
Last updated